Classification of Boar Spermatozoid Head Images Using a Model Intracellular Density Distribution

نویسندگان

  • Lidia Sánchez
  • Nicolai Petkov
  • Enrique Alegre
چکیده

We propose a novel classification method to identify boar spermatozoid heads which present an intracellular intensity distribution similar to a model. From semen sample images, head images are isolated and normalized. We define a model intensity distribution averaging a set of head images assumed as normal by veterinary experts. Two training sets are also formed: one with images that are similar to the model and another with non-normal head images according to experts. Deviations from the model are computed for each set, obtaining low values for normal heads and higher values for heads assumed as non-normal. There is also an overlapping area. The decision criterion is determined to minimize the sum of the obtained false rejected and false acceptance errors. Experiments with a test set of normal and non-normal head images give a global error of 20.40%. The false rejection and the false acceptance rates are 13.68% and 6.72% respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Approach to Boar Semen Head Classification Based on Intracellular Intensity Distribution

We propose a technique to compute the fraction of boar spermatozoid heads which present an intracellular density distribution pattern hypothesized as normal by veterinary experts. This approach offers a potential for digital image processing estimation of sperm capacitation which can substitute expensive staining techniques. We extract a model distribution from a training set of heads assumed a...

متن کامل

Statistical approach to boar semen evaluation using intracellular intensity distribution of head images.

We propose a method for the classification of boar sperm heads based on their intracellular intensity distributions observed in microscopic images. The image pre-processing comprises segmentation of cell heads and normalization for brightness, contrast and size. Next, we define a model distribution of head intracellular intensity of an alive cell using a set of head images assumed to be alive b...

متن کامل

Classification of Boar Sperm Head Images using Learning Vector Quantization

We apply Learning Vector Quantization (LVQ) in automated boar semen quality assessment. The classification of single boar sperm heads into healthy (normal) and non-normal ones is based on grey-scale microscopic images only. Sample data was classified by veterinary experts and is used for training a system with a number of prototypes for each class. We apply as training schemes Kohonen’s LVQ1 an...

متن کامل

Surface views of spermatozoa as revealed by fracture-flip.

We have used fracture-flip to produce new, macromolecular-resolution images of the surface of boar spermatozoa. Over the head, acrosomal and postacrosomal regions display sharply demarcated, subtly different surface textures. The rim is particle-poor, as well as a region above the oblique cords over the posterior ring. The tail shows two morphologically distinct domains: (1) the principal piece...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005